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INSTABILITY MODES OF CANTILEVERED BARS
INDUCED BY FLUID FLOW THROUGH ATTACHED PIPES*

G. HERRMANN and S. NEMAT-NASSERt

Department of Civil Engineering, The Technological Institute,
Northwestern University, Evanston, Illinois

Abstract-A cantilevered bar of uniform cross-section with flexible pipes conveying fluid attached to it is
considered. It is shown that for certain cross-sections of the bar stability may be lost by either torsional diver
gence (torsional buckling) or torsional flutter, depending upon the location of the pipes with respect to the
center of gravity of the cross-section. In addition, transverse flutter can also occur, but not transverse buckling.
It is shown further that the Coriolis forces, which are present due to the motion of the fluid in vibrating pipes,
may have either a stabilizing or a destabilizing effect, depending upon the parameters of the system.

1. INTRODUCTION

IN a recent paper [11, the present authors have shown that a cantilevered bar subjected
at the free end to distributed, compressive, follower forces may lose stability by either
torsional divergence (torsional buckling) or torsional flutter (torsional oscillations with
increasing amplitude), depending upon the load distribution at the end section, In addi
tion, it was shown that transverse flutter can also occur, but not transverse divergence,
However, in [1], no attempt was made to indicate how such systems may be realized,

The purpose of the present study is to show that a cantilevered bar having two axes
of symmetry can exhibit all the features outlined in [1] when two pairs of flexible pipes
are placed symmetrically at the distance h/2 from the longitudinal axis of the bar (z-axis,
Fig. 1), and an incompressible fluid at a constant velocity U is pumped through the pipes.
In the sequel, we shall see that, in addition to transverse flutter, the system can exhibit
both torsional buckling and torsional flutter, depending upon the value of h. Moreover,
the Coriolis forces which are now present due to the motion of the fluid in vibrating pipes,
can have either a stabilizing or a destabilizing effect That is, the Coriolis forces, similar
to viscous damping forces, can either increase or decrease the critical flutter load (both
in torsional flutter and transverse flutter of the system), depending upon the parameters
of the system.

The destabilizing effect of velocity-dependent forces in nonconservative problems
was formally established by the authors in [2] for systems with a finite number of degrees
of freedom. In particular it was shown that the critical load of the undamped system (no
velocity-dependent forces exist) is an upper bound for the critical load of the same system
when some sufficiently small velocity-dependent forces are also present

In the past, many authors [3-6] have concluded that viscous damping may have a
destabilizing effect in nonconservative continuous systems. However, this conclusion was
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obtained by reducing the continuous system to a system with a finite number of degrees
of freedom which, as was shown in [2], exhibits a destabilizing effect. Therefore, one does
not know whether the destabilizing effect observed has been produced through the re
duction of the system with an infinite number of degrees of freedom or is an inherent
property of the continuous system. This difficulty is circumvented by the authors in (7].
A cantilevered pipe conveying fluid is considered there and the internal and external
viscous damping forces are also included. It is then shown that sufficiently small Coriolis
forces and viscous damping forces may, in fact, have a destabilizing effect in this system
which has an infinite number of degrees of freedom.

In the present study we shall show that the above effect is also present in torsional
flutter of the system under study. Moreover, even for relatively large values of Coriolis
forces, the destabilizing effect may still exist for some values of h.

2. DERIVATION OF EQUATION OF MOTION AND BOUNDARY CONDmONS

We consider a thin-walled, cantilevered, elastic beam with two pairs of flexible pipes,
which are attached to the bar at a distance h/2 from the z-axis (so that the whole system
deforms as a unit) and pump fluid at a constant velocity U through the pipes, as sketched
in Fig. 1. We designate the length of the system by L, the torsional rigidity by C = GJ,
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FIG. 1

and the warping rigidity by C1 "" ECw [8], and similar to the work of Benjamin [9]
obtain the equation of torsional motion of the system, using Hamilton's principle. With
<p(z, t) denoting the angle of rotation at section z and at time t, the strain energy of the
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torsional deformation is [10]

(1)

where primes denote differentiation with respect to z. The kinetic energy is

L

T1 = t J
o

mrz((W dz, (2)

where a dot denotes differentiation with respect to time, m is the mass of the assembly
per unit of length (exclusive of the mass of the fluid), and r is the polar radius of gyration
of the cross-section of the system.

The total kinetic energy of the fluid may be obtained by adding to the kinetic energy
of the fluid contained within the pipes, Tz, the change in the kinetic energy of the fluid
entering and leaving the pipes during a very small interval of time /1t:

T' = Tz+2MUHu~-tUf)At, (3)

where T' is the total kinetic energy of the fluid, M the mass density of the fluid per unit
length of each pair of pipes, V 0 the outlet velocity vector, and Vi the inlet velocity vector.
But Vi = Ui, where i is the unit vector in the z-direction, and V o = i+nUr where r is
the unit vector tangent to the top (bottom) pipe at z = L, r the position vector of the
top (bottom) pipe at z = L, and n is the ratio of the area of each pipe to that of the
attached nozzle at the free end. Hence, l> T' becomes

(4)

The components of the absolute velocity of the fluid are y+ U(fJyjfJz) in the y-direction,
and U[1-t(y')Z] - win the z-direction, where w(z, t) denotes the average displacement at
section z and at time t in the z-direction. Tz then becomes (within an additive constant)

Tz = 2Ms: (tyz + Uyy' - UW) dz.

But y = (hj2)cp, which yields

Tz = 2Mr[h
8

Z

epz + U:
z

epcp' - UwJ dz.

With J being the unit vector along the y-axis, we have (see Fig. 1)

r =Jsin O+icos 0 = J(y')%=L +i

= [~CP'(L~J+i,

r = J(y)%=L - i(W)%=L = [~CP(L~J - [w(L)]i.

Then

(i+ nUr) .l>r ~ -nU l>w(L) +~ [4J(L)+nUcp'(L)] l>cp(L),

(5)

(6)
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where weLl 15w(L) is neglected (being a term of higher order). The Lagrangian now becomes

and Hamilton's principle takes on the form

where

L

w(L) = tI
o

r2(q>')2 dz.

Carrying out the variations and using integration by parts, we obtain

04q> 2 2 02q> 02q> ( . h2
) a2

q>
C1 OZ4 + [2MnU r C] OZ2 + MUh

2
ozot + mr

2
+M2" ot2 = 0,

(7)

(8)

oq>
ffl = - = O·
't' oz ' z = 0,

We now introduce the following dimensionless quantities:

z = L. (9)

h
IX =-,

r
M

f3 =-,
m
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(10)

which are analogous to those obtained by the present authors in [1] for cantilevered bars
subjected at the free end to follower forces, except for the third term in the first equation,
which is due to the Coriolis acceleration. As we shall see in the sequel, this term can have
either a destabilizing or a stabilizing effect. That is, for sufficiently small Coriolis forces
(n large and {J' small) the system loses stability (by torsional or transverse flutter) under
smaller F than obtained when n = 00 (no Coriolis forces). On the other hand, for {J'/n
sufficiently large, the critical value of F can be increased by increasing {J'/n.

We note here that, in torsional instability similar to transverse instability, the Coriolis
forces have an effect similar to that of internal viscous damping [7]. That is, although
damping (and also Coriolis forces) is a dissipating agency, when it is sufficiently small, it
may act as a channel for the transfer of energy to the system from the source, which is
always associated with the type of nonconservative forces considered here [11].

3. STABILITY ANALYSIS

3.1 Frequency equation

We take the solution of system (10) as qJ(~, r) = 1jJ(~)ei(J)t and obtain the following
eigenvalue problem:

dljJ
IjJ = d~ = 0; at ~ = 0,

We then let 1jJ(~) = Aei;'~ and obtain

A4-(2F-I()A2-wj({J'~)a2A-W2= o.

(11)

(12)
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Equation (12) is a polynomial of degree four in A and therefore has, in general, four
complex roots. Let these roots be designated by Aj ; j = 1, 2, ... ,4. Then,

4

"'(~) = L AiAj~,
j= 1

which may now be substituted into the boundary conditions to yield four homogeneous
equations for four constants Aj • These equations are

4

L A j = 0,
j= 1

4

L AjA j = 0,
j= 1

4

L AfAiAj
= 0,

j= 1

4

L (Af -'1)AjA}~iAj = 0,
j=1

(13)

where '1 = F(2 - (1,2/2) - K. System (13) has nontrivial solutions if and only if the determi
nant of the coefficients of Aj; j = 1, 2, ... ,4 is identically zero, i.e. the frequency equation
is

/!,. == ei(AI +A2 )(AIA~ + 'lAI A2)(A2 - At)(A4 - A3)

- ei(AI +A')(AIA~ + '1At A3)(A3 - At)(A4- A2)

+ei(AI +A4)(AIAi +'1At A4)(A4 -Ad(A3 -A2)

+ei
(A2 + A')(A~A~ + '1A2A3)(A3 - A2)(A4- Ad

- ei
(A2 +A4)(A~Ai + '1A2A4)(A4 - A2)(A3 - At)

+ei(A3+A4)(A~Ai +'1A3A4)(A4 -A3)(A2 -At) = 0,

where At, A2' A3, and A4 are defined as functions of OJ through equation (12).

(14)

3.2 Torsional buckling

To obtain the condition for divergent torsional motion, we let OJ = °in equation (12)
and obtain At.2 = 0, and A3.4 = ±J(2F-K). Then, with K = bn2 and F = 2F-K = yn2,
equation (14) reduces to

4ycosnJy
(y + b)(l- cos nJy),

(15)

which is identical to the equation obtained by the authors for the torsional buckling of a
cantilevered beam subjected at the free end to follower forces [1]. The first branch of the
torsional buckling, corresponding to the first mode of instability, is shown by the solid
line in Fig. 2.
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3.3 Torsional flutter
For given IX, p, n, fJ and F = ')'7[2, equations (12) and (14) yield the frequencies oftor

sional oscillations. When F is small, these frequencies are all located on the left-hand side
of the imaginary axis in the complex iw plane and the system can perform only damped
torsional oscillations.

As we increase F, one of these frequencies approaches the imaginary axis, and for a
certain value of F, say Fe.. equations (12) and (14) yield a real value for w. If we now
increase F beyond this critical value, one of the roots of (14) becomes complex with
negative imaginary part. The beam will oscillate with an exponentially increasing ampli
tude. Consequently, we shall seek, for given IX, p, n, and fJ, values of w (real) and F which
identically satisfy (12) and (14~ This can be done directly with the aid of a computer. The
computer can be instructed to find the roots of equation (12) for specified values of IX, p,
n, fJ, wand y, and then compute the value of A. By varying the value of wand y system
atically, the critical wand y may easily be selected which make both real and imaginary
parts of A identically zero. This is illustrated in Fig. 3 where for IX = 1'50, fJ = 1-0, P= 1'0,
and n = 1, both real and imaginary parts of A = Al + iA2 are plotted against the values of
w2

• We see that for y = 3'40, and w2 = l-137t4, A is identically zero. Similar results may
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be obtained for other values of a, {3, and n. In this manner torsional flutter curves may
be constructed. The first branch (the only practically significant one) of torsional flutter
is shown in Fig. 2 by dashed lines, for [) = 1, n = 1, and indicated values of {3. The solid
curve for torsional flutter in Fig. 2 is the limiting case when n = 00 and corresponds to
the torsional flutter of a cantilevered bar subjected at the free end to compressive follower
forces [1].

It must be noted that, even for relatively large values of {3 (n = 1), the Coriolis forces
may have a destabilizing effect for certain values of a. (For example, for {3 = 0·1 and 1·0 <
a < 1'35, as is seen in Fig. 2.)

3.4 Transverse flutter

In addition to torsional buckling and torsional flutter, the bar may lose stability also
by transverse flutter [12]. The equation of motion and the boundary conditions for this
case have been derived by employing Hamilton's principle in [9J and D'Alembert's
principle in [12]. Here, we may simply identify C 1 with £1, cp(z, t) with y(z, t) and write

04y 202y 02y 02y _
£1 OZ4 +2MnU OZ2 +4MU OZ ot +(2M +m) ot2 - 0,
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oy
y :::;; - = 0; at z = 0oz

02y 03yaz2 :::;; OZ3 :::;; 0; at z = 0

which, by introducing the following dimensionless quantities:

2f3
2f3+ 1

reduces to

ov
y = ~~ = 0; ~ = 0

0",

Equation (12) now becomes

and equation (14) takes on the form

~ :::;; ei().j + A2)iliil~(il2- Al)(A4 - }.3)

- ei(Aj +i.3)Aiil~(il3 - il t )(A4 - ..1.3)

+ei(Aj +i. 4 )iliA~(A4 - il t )(A4 - A2)

+e i(A2+i. 3
)il1il~(A3 - A2)(A4- At)

_ei(A2+ ).4)A~il~(A4- A2)(il3- At)

+eiq3 +i.4
)il~A~(A4 - ,.1,3)(,.1,2 - At) :::;; O.

(12')

(14')

For a given f3 and n, we now seek values of (J) and Ft which identically satisfy (12')
and (14'). In this manner we obtain the limit of transverse flutter, as shown by horizontal
dashed lines in Fig. 2 for Elr2/C t = 1·5 and f3 0,1,0,2. In this figure, the horizontal
solid line indicates the limit of transverse flutter for n = 00 [1]. We note that for f3 = 0'5,
1'0, the transverse flutter occurs at y = 12'2, and 15'8 respectively. These values are not
shown in Fig. 2.
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4. ANALYSIS OF FLUTTER BY INDIRECT METHOD
l;he method used in the previous section for the analysis of flutter was a direct one.

That is, for a given system we directly obtained the critical values of y and co. One may
solve the same problem by an indirect method which was employed in [12].

To this end we let A.j; j = 1,2, ... ,4 denote the roots of (12). Then we have

..1. 1+..1.2+..1.3+..1.4 = 0,

..1.1..1.2+ ..1.1..1.3+ ..1.1..1.4+ ..1.2..1.3+ ..1.2..1.4+ ..1.3..1.4 = - (2F - K),

..1. 1..1.2..1.3+ ..1.1..1.2..1.4+ ..1. 1..1.3..1.4+ ..1.2..1.3..1.4 = j( {J'~ )rx2co,

..1.1..1.2..1.3..1.4 = co2.

The first equation in (16a) is identically satisfied if we let

Ai = a-b-c,

a+b-c,

a-b+c,

and from the remaining equations we obtain

We now let

a = t(p+iq),

b = t(p-iq),

and from (16c) obtain

(16a)

(16b)

(16c)

(16d)

(16e)

p2_ q2+2c2 = 2F-K,

(p2+ q2)C = ~J(t}'f)(X2CO,

(p2 _ C2)(q2 +c2) = co2,

where p, q, and c are all real. Substituting from (16d) into (16b) and then into the frequency
equation (14), we finally arrive at, after a series of tedious manipulations,



(17)

Instability modes of cantilevered bars induced by fluid flow through attached pipes 49

where:

1\1 = cp{2[3p2q2_q4 _C2(p2 +q2)+4c4] +(p2 - 3q2-4c2)I}} COS p sinh q

+cq{2[p4 _3p2q2_C2(p2 +q2)_4c4] _(3p2_q2 -4c2)I}} sin p cosh q

+ pq{[(p2 +q2)(q2 _ p2 +2c2)] +(p2 +q2)I}} sin 2e,

1\2 = {[p2 q2(q2 _ p2)+C2(p4 +q4 _ 6p2q2)_ 3e4(p2 _q2)_4e6]

+ [2p2q2 _ C2(p2 _ q2) + 4c4]I}} sin p sinh q

+ pq{2[ p2q2+3e2(p2 _q2)_7c4] -[ p2 _q2 - 2e2]1'/} cos p cosh q

_ pq{[ p4 +q4 +2c2(q2 _ p2) +2c4] _ [p2 _ q2 - 2e2JI}} cos 2e.

For an assumed value of e and given a and K = bn2
, we may now find p and q such

that 1\1 = 1\2 0. Then, from equations (16e) the corresponding values of F, p, and w,
for a given n, may be computed.

The above method is an indirect one, as we do not know, in advance; which particular
problem is being investigated. Moreover, if a computer is being used to find values of p
and q which satisfy 1\1 = 1\2 = 0, it is then just as easy to employ the direct method out
lined in the previous section. However, for small values of Coriolis forces, that is for
sufficiently small .j(f3'!n), one may reduce equations (17) by neglecting the higher order
terms in c and study the effect of small Coriolis forces directly. This we shall discuss in the
following section.

5. THE EFFECT OF SMALL CORIOLIS FORCES

We consider equation (17) and by neglecting O(e2
) and higher order terms obtain

~1 = p{2[3p2q2_ q4]+[p2_3q2]1'/} cosp sinhq

+ q{2[ p4 - 3p2q2] + [q2 - 3p2]1'/} sin p cosh q

+2pq{(q4_ p4)+(p2+ q2)1'/} = 0,

~2 = pq[(q2 - p2)+ 21'/] sin p sinh q

+[- 2p2q2_ (p2 - q2)1'/] cos p cosh q

_[p4+ q4_(p2_ q2)1'/] = 0,

where

(18)

(19)

The second equation in (18) is the frequency equation for n = 00, (no Coriolis forces
[1]), and the first equation, to the first order of approximation in .j(f3'!n) = O(e), presents
the effect of sufficiently small Coriolis forces. We note that ~1 and ~2 are both independent
of c and, therefore, we may directly seek values of wand F which make them identically
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zero. This is illustrated in Fig. 4 for rt. = 1,5, where the critical load is found to be y = 1·67.
In Fig. 5, the critical load y is plotted against rt. for sufficiently small Coriolis forces (the
dashed curve). The solid curve for torsional flutter in this figure is for the limiting case of
n = 00 [1]. We note that the existence of Coriolis forces does not alter the region of di
vergent motion, as is expected. However, it makes this region a closed set-that is, in the
presence of Coriolis forces, the points on the divergent curve indicate neutrally stable
states. The horizontal solid line in Fig. 5 denotes the limit of transverse flutter for n = 00,

and the horizontal dashed line indicates that limit for sufficiently small Coriolis forces [7],
(for Elxr2Ie 1 1'5).

30
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It may be of interest to obtain the critical values of y for fJ = 00 and n = 1. This, of
course, provides the upper limit of torsional and transverse flutter. The dotted curve in
Fig. 5 represents this limiting case for <5 = 1. We note that transverse flutter, for fJ = 00

and n = 1, occurs at y ~ 47, which is not shown in Fig. 5.
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Resume-Dans cette etude, une barre a console a section constante et ayant des tuyaux a fluide flexibles est
examinee. On remarque que pour certaines sections transversales de la barre !'on peut perdre toute stabilite soit
par divergence de torsion (flambement de torsion) soit par perturbation vibratoire de torsion selon la position des
tuyaux en relation au centre de gravite de la section transversale. De plus, une perturbation vibratoire pourrait
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advenir mais pas un flam bement transversal. L'on remarque de plus que les forces de Coriolis, presttntes acause
du mouvement du f1uide dans les tuyaux vibrants, pourraient avoir soit un effet stabilisant soit un effet instabilis
ant, selon les parametres du systeme.

Zusammenfassung-Ein Kragtrager Stab mit gleichmal3igem Querschnitt der biegsame Riihren tragt die Fllis
sigkeiten fiirdern wird untersucht. Es wird gezeigt, dal3 flir bestimmte Stabquerschnitte die Stabilitat entweder
durch Torsionsknicken oder durch Torsionsflattern verloren,werden kann,je nachdem wo die Rohre angebracht
sind mit Hinsicht auf den Schwerpunkt des Querschnittes. Ferner kann auch ein Transversalflattern entstehen
aber kein Transversalknicken. Weiters wird gezeigt, dal3 die Coriolis-Krafte, durch die Fliissigkeitsbewegung in
vibrierenden Rohren bedingt, je nach Umstiinden die Stabilitiit entweder positiv oder negativ beeinflul3en.

A6cTpaKT-06cyJK"aeTCH KOHCOJIhHaH 6arrKa O"HOpO"HOro noncpc'IHoro CC'ICHHH C npHKpCnJIeHHblMH K
Hcll rH6KHMH Tpy6aMH, no"alOllllfMIf JKIf"KOCTh. nOKa3aHO, 'ITO ):\JIH HCKOTOpblX nOnCpC'IHbIX Ce'lCHIIH
6aJIKif YCTOH'IIfBOCTb MOJKCT 6bITb nOTcpHHa KPYTIfJIbHblM paCXOJK"eHHeM (KPYTHJIbHbIM H3rH6aHHCM) HJIH
KPYTIfJIbHOH Blf6paUlfCH (!\JJIallTcp), 3aBHCHllllfMIf OT MCCTOnOJIOJKCHIfH Tpy6 no OTHOUICHHIO K nCHTpy
THJKCCTH nOnCpC'IHOrO CC'ICHHH. B "OnOJIHCHlfe MOJKeT nOJIy'lIfTbCH TaKJKe nOnCpC'IHaH BIf6paUIfH, HO He
MOJKeT nOJIy'lHTbCH nOnepe'lHOrO H3rIf6aHHH. )J,aJIee nOKa3aHO, 'ITO KOPHOJIbHble CIfJIbI (Coriolis) KOTopble
npHcyTcTBylOT 6JIarO"apH "BHJKeHHIO JKH"KOCTH BBIf6pHPYIOll.lIfX Tpy6ax MoryT HMeTb cTa6HJIlf3HpyIOllllfH
HJIH "eCTa6HJIH3HPYIOlllHH 3!\Jl\JeKT, 3aBlfcHllllf1i OT napaMCTpOB CHCTCMbI.


