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INSTABILITY MODES OF CANTILEVERED BARS
INDUCED BY FLUID FLOW THROUGH ATTACHED PIPES*
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Abstract—A cantilevered bar of uniform cross-section with flexible pipes conveying fluid attached to it is
considered. It is shown that for certain cross-sections of the bar stability may be lost by either torsional diver-
gence (torsional buckling) or torsional flutter, depending upon the location of the pipes with respect to the
center of gravity of the cross-section. In addition, transverse flutter can also occur, but not transverse buckling.
It is shown further that the Coriolis forces, which are present due to the motion of the fluid in vibrating pipes,
may have either a stabilizing or a destabilizing effect, depending upon the parameters of the system.

1. INTRODUCTION

IN a recent paper [1], the present authors have shown that a cantilevered bar subjected
at the free end to distributed, compressive, follower forces may lose stability by either
torsional divergence (torsional buckling) or torsional flutter (torsional oscillations with
increasing amplitude), depending upon the load distribution at the end section. In addi-
tion, it was shown that transverse flutter can also occur, but not transverse divergence.
However, in [1], no attempt was made to indicate how such systems may be realized.

The purpose of the present study is to show that a cantilevered bar having two axes
of symmetry can exhibit all the features outlined in [1] when two pairs of flexible pipes
are placed symmetrically at the distance h/2 from the longitudinal axis of the bar (z-axis,
Fig 1), and an incompressible fluid at a constant velocity U is pumped through the pipes.
In the sequel, we shall see that, in addition to transverse flutter, the system can exhibit
both torsional buckling and torsional flutter, depending upon the value of h. Moreover,
the Coriolis forces which are now present due to the motion of the fluid in vibrating pipes,
can have either a stabilizing or a destabilizing effect. That is, the Coriolis forces, similar
to viscous damping forces, can either increase or decrease the critical flutter load (both
in torsional flutter and transverse flutter of the system), depending upon the parameters
of the system.

The destabilizing effect of velocity-dependent forces in nonconservative problems
was formally established by the authors in [2] for systems with a finite number of degrees
of freedom. In particular it was shown that the critical load of the undamped system (no
velocity-dependent forces exist) is an upper bound for the critical load of the same system
when some sufficiently small velocity-dependent forces are also present.

In the past, many authors [3-6] have concluded that viscous damping may have a
destabilizing effect in nonconservative continuous systems. However, this conclusion was
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obtained by reducing the continuous system to a system with a finite number of degrees
of freedom which, as was shown in [2], exhibits a destabilizing effect. Therefore, one does
not know whether the destabilizing effect observed has been produced through the re-
duction of the system with an infinite number of degrees of freedom or is an inherent
property of the continuous system. This difficulty is circumvented by the authors in [7].
A cantilevered pipe conveying fluid is considered there and the internal and external
viscous damping forces are also included. It is then shown that sufficiently small Coriolis
forces and viscous damping forces may, in fact, have a destabilizing effect in this system
which has an infinite number of degrees of freedom.

In the present study we shall show that the above effect is also present in torsional
flutter of the system under study. Moreover, even for relatively large values of Coriolis
forces, the destabilizing effect may still exist for some values of h.

2. DERIVATION OF EQUATION OF MOTION AND BOUNDARY CONDITIONS

We consider a thin-walled, cantilevered, elastic beam with two pairs of flexible pipes,
which are attached to the bar at a distance h/2 from the z-axis (so that the whole system
deforms as a unit) and pump fluid at a constant velocity U through the pipes, as sketched
in Fig. 1, We designate the length of the system by L, the torsional rigidity by € = GJ,
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and the warping rigidity by C, = ECy [8], and similar to the work of Benjamin [9]
obtain the equation of torsional motion of the system, using Hamilton’s principle. With
¢(z, t) denoting the angle of rotation at section z and at time ¢, the strain energy of the
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torsional deformation is [10]

L
Vi=4] [Cilo"V+Clo)]dz, )
where primes denote differentiation with respect to z. The kinetic energy is
L
T =4[ mr@rds @

where a dot denotes differentiation with respect to time, m is the mass of the assembly
per unit of length (exclusive of the mass of the fluid), and r is the polar radius of gyration
of the cross-section of the system.

The total kinetic energy of the fluid may be obtained by adding to the kinetic energy
of the fluid contained within the pipes, T, the change in the kinetic energy of the fluid
entering and leaving the pipes during a very small interval of time At:

T = T, +2MUGU2 - 1U?) At 3)

where T is the total kinetic energy of the fluid, M the mass density of the fluid per unit
length of each pair of pipes, U, the outlet velocity vector, and U; the inlet velocity vector.
But U; = U{, where { is the unit vector in the z-direction, and U, = #+nU% where 7 is
the unit vector tangent to the top (bottom) pipe at z = L, r the position vector of the
top (bottom) pipe at z = L, and n is the ratio of the area of each pipe to that of the
attached nozzle at the free end. Hence, 6T’ becomes

8T’ = 8T, +2MU(t+nU%). ér. )

The components of the absolute velocity of the fluid are y+ U(dy/dz) in the y-direction,
and U[1—4(y')*]—w in the z-direction, where w(z, t) denotes the average displacement at
section z and at time ¢ in the z-direction. T, then becomes (within an additive constant)

L
T, = 2Mj0 Gy? + Uyy — Uw) dz.

But y = (h/2)¢p, which yields

L

h? h?

T, = 2MJ [—¢2+U—¢(p’—— U»‘v} dz. (5)
o L8 4

With j being the unit vector along the y-axis, we have (see Fig. 1)

2 =jsinf+icos = }(y),=r+1i
- [jow)+

h
r = j(y)z=L - i(w)z=L = [E(p(L)]j__[W(L)]i
Then

2
F+nU%).0r ~ —nU 5w(L)+hT[¢(L)+ nU@'(L)] do(L), 6)
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where w(L) dw(L) is neglected (being a term of higher order). The Lagrangian now becomes
L= T\+T,—V,+2MnU*w(L) 7

and Hamilton’s principle takes on the form

ty t2 2
5‘5\ Ldt—J MU%[gb(L)—i-nU(p’(L)] dp(Lydt = 0, (8)
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where
L
WD) = 3] re) dz

Carrying out the variations and using integration by parts, we obtain
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We now introduce the following dimensionless quantities
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Equations (9) then become

4 2 2 2
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which are analogous to those obtained by the present authors in [1] for cantilevered bars
subjected at the free end to follower forces, except for the third term in the first equation,
which is due to the Coriolis acceleration. As we shall see in the sequel, this term can have
either a destabilizing or a stabilizing effect. That is, for sufficiently small Coriolis forces
(n large and B’ small) the system loses stability (by torsional or transverse flutter) under
smaller F than obtained when n = o (no Coriolis forces). On the other hand, for f'/n
sufficiently large, the critical value of F can be increased by increasing f'/n.

We note here that, in torsional instability similar to transverse instability, the Coriolis
forces have an effect similar to that of internal viscous damping [7]. That is, although
damping (and also Coriolis forces) is a dissipating agency, when it is sufficiently small, it
may act as a channel for the transfer of energy to the system from the source, which is
always associated with the type of nonconservative forces considered here [11].

3. STABILITY ANALYSIS

3.1 Frequency equation

We take the solution of system (10) as @(&, 7) = ¥(£)e™" and obtain the following
eigenvalue problem:

d4
aé—‘f+[2F xd€2+(t )\/( ) —wzw—o

_dv_ _
l//—dé——(), at &£=0,
d%y
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We then let (&) = Ae** and obtain

14—(2F—K)/12—w\/(ﬂ’g)azi—wz =0. (12)
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Equation (12) is a polynomial of degree four in 4 and therefore has, in general, four
complex roots. Let these roots be designated by 4;;j = 1,2,...,4. Then,

4
WO = T Aes,

which may now be substituted into the boundary conditions to yield four homogeneous
equations for four constants 4;. These equations are

4

Z A4;=0,
j=1
4
Z )“in= 0,

j=1

AJ?Ajeilj = 0,
1

M
TM .

(A2 ~miAge = 0, (13)

1

j

where n = F(2—a?/2)— k. System (13) has nontrivial solutions if and only if the determi-
nant of the coefficients of 4;;j = 1,2,...,4 is identically zero, i.e. the frequency equation
is

A= eMt4(1222 4 p2 VA —A)(Ae—43)
— M) 2222 L pdiA3)(As— A1) (A —4,)
+e' 290103 + 14140 (A — A1) (A3 — 45)
+e 2193222 L 4 — A2) (e —4y)
—eiR2¥A0(12)2 4 1 3 WAa—A2)(A3—Ay)
+eh+ 401222 4 pd A Ay —A3) (A2 —44) = O,

(14)

where 1,, 4,, 43, and 1, are defined as functions of @ through equation (12).

3.2 Torsional buckling

To obtain the condition for divergent torsional motion, we let @ = 0 in equation (12)
and obtain A, , = 0, and 4, 4 = +./(2F —«). Then, with k = éz% and F = 2F —x = yn?,
equation (14) reduces to

T (y+0)(1—cos n/y)’

5 4y cos m\[y 1)

which is identical to the equation obtained by the authors for the torsional buckling of a
cantilevered beam subjected at the free end to follower forces [1]. The first branch of the
torsional buckling, corresponding to the first mode of instability, is shown by the solid
line in Fig. 2.
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3.3 Torsional flutter

For given o, §, n, § and F = yn?, equations (12) and (14) yield the frequencies of tor-
sional oscillations. When F is small, these frequencies are all located on the left-hand side
of the imaginary axis in the complex iw plane and the system can perform only damped
torsional oscillations.

As we increase F, one of these frequencies approaches the imaginary axis, and for a
certain value of F, say F,,, equations (12) and (14) yield a real value for w. If we now
increase F beyond this critical value, one of the roots of (14) becomes complex with
negative imaginary part. The beam will oscillate with an exponentially increasing ampli-
tude. Consequently, we shall seek, for given a, 8, n, and 8, values of w (real) and F which
identically satisfy (12) and (14). This can be done directly with the aid of a computer. The
computer can be instructed to find the roots of equation (12) for specified values of a, g,
n, 8, ® and y, and then compute the value of A. By varying the value of @ and y system-
atically, the critical w and y may easily be selected which make both real and imaginary
parts of A identically zero. This is illustrated in Fig. 3 where for « = 1-50, 8 = 10, § = 1-0,
and n = 1, both real and imaginary parts of A = A, +iA, are plotted against the values of
w?. We see that for y = 3-40, and w? = 1-13n%, A is identically zero. Similar results may
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be obtained for other values of a, f§, and n. In this manner torsional flutter curves may
be constructed. The first branch (the only practically significant one) of torsional flutter
is shown in Fig. 2 by dashed lines, for = 1, n = 1, and indicated values of . The solid
curve for torsional flutter in Fig. 2 is the limiting case when n = oo and corresponds to
the torsional flutter of a cantilevered bar subjected at the free end to compressive follower
forces [1].

It must be noted that, even for relatively large values of § (n = 1), the Coriolis forces
may have a destabilizing effect for certain values of a. (For example, for § = 0-1 and 1-0 <
o < 1-35, as is seen in Fig. 2.)

3.4 Transverse flutter

In addition to torsional buckling and torsional flutter, the bar may lose stability also
by transverse flutter [12]. The equation of motion and the boundary conditions for this
case have been derived by employing Hamilton’s principle in [9] and D’Alembert’s
principle in [12]. Here, we may simply identify C, with EI, ¢(z, t) with y(z, t) and write
o%y 0%y

ot 02
E1#+ 2MnU267f+4MU
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y=?=0; at z=0
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Equation {12) now becomes

14_2F112—w\/(§-f-ﬂ) A—w? =0,

and equation {14) takes on the form

A=Wt 2idg 20 —1s)
—~ B A2220 1) (A —Ay)
el ti9)22200 e~ A1) (e —4,)
et a322200 1) (A —Ay)
—efh2t 032200 v — A (A3 —Ay)
+e 201323y — A3) (4 — 44) = O.
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(12)

(14))

For a given B and n, we now seek values of w and F; which identically satisfy (12
and (14'). In this manner we obtain the limit of transverse flutter, as shown by horizontal
dashed lines in Fig. 2 for EIr?/C, = 1'5 and B = 01, 0-2. In this figure, the horizontal
solid line indicates the limit of transverse flutter for n = oo {1]. We note that for § = 0-5,
1:0, the transverse flutter occurs at y = 12-2, and 15-8 respectively. These values are not

shown in Fig. 2.
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4. ANALYSIS OF FLUTTER BY INDIRECT METHOD

Fhe method used in the previous section for the analysis of flutter was a direct one.
That is, for a given system we directly obtained the critical values of y and w. One may
solve the same problem by an indirect method which was employed in [12],

To this end we let A;;j = 1,2,..., 4 denote the roots of (12). Then we have

Ay+A,+43+4, =0,

2(1112 +21113+111/14+}~22,3 +12}~4+/“L3I‘L“ = "'(EF“K}, (16 )
a

F
AAgds + A dgdg + A Aghs +Aydsdy = \/ ( = )oczw,

2112/13/14 == - 0)2.

The first equation in {16a} is identically satisfied if we let

Ay =a-b—c,
iz == "‘d+b—C,

(16b)
Ay = —a~b+c,

12.4 = a+b+c,

and from the remaining equations we obtain

2F -k
2 ¥

1 F,
abc-—g\/(ﬁ;}a w,

a*+b*~2a2p? — 207 —2¢%a* = — .

aA+b2+ct =

(16¢)

We now let
a = Hp+ig),
: . (16d)
b = 3(p—ig),
and from (16¢) obtain

p?—q*+2c* = 2F —x,

(P*+¢%)c = —;-\/ (B’%)azw, (16e)

(P> =cA@*+c?) = w?,

where p, g, and ¢ are all real. Substituting from (16d) into (16b) and then into the frequency
equation (14), we finally arrive at, after a series of tedious manipulations,

A=A +iA, =0,
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where :

Ay = ep{2[3p%¢* —q¢* — cH(p* + ¢} +4c*]+(p? —39* —4cH)y} cos psinh g
+¢q{2[p*—3p*q* —c*(p* +q*)—4c*] - (3p* —¢* —4c?)y} sin pcosh g
+pg{[(P* +a*)(@* — p* +2c)))+(p* +¢*)n} sin 2c,

A, = {[P*a*q* —p))+ A (p* +q* — 6p’q%) = 3c*(p* — ¢7) —4c] (17
+[2p*q* —c*(p* —g*)+4c*|n} sin psinh g
+pg{2[ —p*q* +3cX(p* ~ ¢*)—Tc*]~[p* ~¢* ~2c*In} cos p cosh ¢
—pq{[p*+q* +2c%(g* ~ p*) +2c*] [ p* ~ ¢* —2¢*Jn} cos 2c.

For an assumed value of ¢ and given « and k = én?, we may now find p and g such
that A; = A, = 0. Then, from equations (16¢) the corresponding values of F, 8, and w,
for a given n, may be computed.

The above method is an indirect one, as we do not know, in advance, which particular
problem is being investigated. Moreover, if a computer is being used to find values of p
and g which satisfy A, = A, = 0, it is then just as easy to employ the direct method out-
lined in the previous section. However, for small values of Coriolis forces, that is for
sufficiently small \/ {B'/n), one may reduce equations (17) by neglecting the higher order
terms in ¢ and study the effect of small Coriolis forces directly. This we shall discuss in the
following section.

5. THE EFFECT OF SMALL CORIOLIS FORCES
We consider equation (17) and by neglecting O(c?) and higher order terms obtain
A, = p{2[3p*¢* —4*]+[p*—34*In} cos psinh g
+a{2[p*—3p*q*]+[q*—3p*In} sin p cosh ¢
+2pg{(g* —pH)+(p* +4°m} = 0,

Y 2 2 M : (18)
A, = pg{(g® —p*)+2y]sin psinh g
+[—2p*q* —(p*—4*)] cos p cosh g
—[p*+a*~(p*—g*m] =
where
2V F
2 _ 2 = >
P —\/(w +F4)+2
(19)

- Jber

The second equation in (18) is the frequency equation for n = o0, (no Coriolis forces
[1]), and the first equation, to the first order of approximation in \/([3 /n) = O(c), presents
the effect of sufficiently small Coriolis forces. We note that Al and A, are both independent
of ¢ and, therefore, we may directly seek values of @ and F which make them identically
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zero. This is illustrated in Fig. 4 for « = 1-5, where the critical load is found to be y = 1:67.
In Fig. 5, the critical load 7 is plotted against « for sufficiently small Coriolis forces (the
dashed curve). The solid curve for torsional flutter in this figure is for the limiting case of
n = oo [1]. We note that the existence of Coriolis forces does not alter the region of di-
vergent motion, as is expected. However, it makes this region a closed set—that is, in the
presence of Coriolis forces, the points on the divergent curve indicate neutrally stable
states. The horizontal solid line in Fig, 5 denotes the limit of transverse flutter for n = co,
and the horizontal dashed line indicates that limit for sufficiently small Coriolis forces [7],
(for EI.r*/C, = 1-5).
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It may be of interest to obtain the critical values of y for f = oo and n = 1. This, of
course, provides the upper limit of torsional and transverse flutter. The dotted curve in
Fig. 5 represents this limiting case for § = 1. We note that transverse flutter, for f =
and n = 1, occurs at y ~ 47, which is not shown in Fig, 5.
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Résumé—Dans cette étude, une barre & console A section constante et ayant des tuyaux a fluide flexibles est
examinée. On remarque que pour certaines sections transversales de la barre ’on peut perdre toute stabilité soit
par divergence de torsion (flambement de torsion) soit par perturbation vibratoire de torsion selon la position des
tuyaux en relation au centre de gravité de la section transversale. De plus, une perturbation vibratoire pourrait
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advenir mais pas un flambement transversal. L'on remarque de plus que les forces de Coriolis, présgntes a cause
du mouvement du fluide dans les tuyaux vibrants, pourraient avoir soit un effet stabilisant soit un effet instabilis-
ant, selon les paramétres du systeme.

Zusammenfassung—Ein Kragtrager Stab mit gleichmifigem Querschnitt der biegsame Rohren trigt die Fliis-
sigkeiten fordern wird untersucht. Es wird gezeigt, daB fiir bestimmte Stabquerschnitte die Stabilitdt entweder
durch Torsionsknicken oder durch Torsionsflattern verloren werden kann, je nachdem wo die Rohre angebracht
sind mit Hinsicht auf den Schwerpunkt des Querschnittes. Ferner kann auch ein Transversalflattern entstehen
aber kein Transversalknicken. Weiters wird gezeigt, daf3 die Coriolis-Kriifte, durch die Fliissigkeitsbewegung in
vibrierenden Rohren bedingt, je nach Umstianden die Stabilitat entweder positiv oder negativ beeinfluBen.

AGcTpakT—OO06Cy)aaeTcss KOHCONbHAA Oalika OJHOPOAHOTO MOMEPEYHOTO CEYCHHS C NPHUKPEIUIEHHBIMUY K
nelt rubkumm TpyGamMu, MOAAIOIMMH XHAKOCTh. [loka3aHo, YTO [/ HEKOTODPBIX HONEPEYHBIX CeYeHMH
BanKu yCTORYHBOCTh MOXET ObITh IOTEPSHA KPYTH/IBHBIM PacXOXAcHUEM (KPYTHIIBHBIM U3rHOaHHEM) MITH
KpyTUIbHON BuOpauueit (pnaiirep), 3aBUCALIMMH OT MECTOIONOXKEHUS TPYO IO OTHOLUEHHIO K MEHTPY
TSXKECTH MONEPEYHOro CedeHus. B pononiHeHne MOXET MONyYMTBCS TaKXKe NonepevHas BHOpaLusi, HO He
MOXET MOJIYYHThCA Monepeynoro uirubanus. [fanee noxaszano, yro Kopuonsubie cunsl (Coriolis) xoTopsie
MPUCYTCTBYIOT O1arofapsi ABHKEHHIO XHAKOCTH B BUOpHPYIOUIMX TPyOaxX MOTYT MMETh CTAOHIIM3MPYFOILIKK
WK necTabunu3upyommii 3¢ dexT, 3aBUCAITHA OT MAPAMETPOB CUCTEMBI.



